Meta analysis of business valuation solutions – are AI based methods better?
Abstract
Purpose of the article – this article addresses the challenge of accurately assessing business value in today's dynamic environment, exploring the limitations of traditional valuation methods and the potential of modern, technology-driven approaches.
Research methodology – the study uses qualitative research methods, including content analysis, deductive reasoning, and comparative analysis, to review various business valuation techniques.
Findings – the research finds that traditional methods like Discounted Cash Flow and Relative Valuation are outdated, failing to capture all value factors. Modern approaches, such as simulation-based valuation, machine learning, and neural networks, combine traditional methods with advanced techniques. These methodologies utilize vast datasets and sophisticated algorithms, enhancing predictive accuracy and understanding of market dynamics. Neural networks excel in analysing complex patterns and adapting to market shifts. However, no single method can capture all nuances, necessitating diverse approaches and acknowledging the subjective nature of valuations.
Practical implications – the findings suggest that incorporating advanced methodologies can improve business valuations, leading to better decision-making and a deeper understanding of market dynamics and intrinsic value.
Originality/Value – this study uniquely examines the transition from traditional to modern valuation methods, highlighting the superior performance of neural networks and the need for a multifaceted approach to business valuation.
References
Azungah, T. (2018). Qualitative research: deductive and inductive approaches to data analysis. Qualitative Research Journal, 18(4), 383–400. https://doi.org/10.1108/QRJ-D-18-00035
Bakarich, K. M., Hossain, M., & Weintrop, J. (2019). Different time, different tone: Company life cycle. Journal of Contemporary Accounting and Economics, 15(1), 69–86. https://doi.org/10.1016/j.jcae.2018.12.002
Basole, R. C., Russell, M. G., Huhtamäki, J., Rubens, N., Still, K., & Park, H. (2015). Understanding business ecosystem dynamics: A data-driven approach. ACM Transactions on Management Information Systems, 6(2). https://doi.org/10.1145/2724730
Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027
Carson, R. T., & Hanemann, W. M. (2005). Chapter 17 Contingent Valuation. Handbook of Environmental Economics, 2, 821–936. https://doi.org/10.1016/S1574-0099(05)02017-6
Chen, A. H.-L., Lee, Z.-H., & Wang, X. (2012). The Valuation of Firms in Taiwan’s Biotech Industry. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1928078
Damodaran, A. (2002). Investment Valuation: Tools and Techniques for Determining the Value of Any Asset (3rd ed.). John Wiley and Sons. https://suhaplanner.files.wordpress.com/2018/09/investment-valuation-3rd-edition.pdf
Damodaran, A. (2007). Valuation approaches and metrics: A survey of the theory and evidence. Foundations and Trends in Finance, 1(8), 693–784. https://doi.org/10.1561/0500000013
Denzin, N. K. (1970). The research act: A theoretical introduction to sociological methods. New York: Aldine.
Dhochak, M., Pahal, S., & Doliya, P. (2022). Predicting the Startup Valuation: A deep learning approach. Venture Capital. https://doi.org/10.1080/13691066.2022.2161968
Dunleavy, P. G. (2009). Reorganization or Liquidation? American Bankruptcy Institute Journal, 28(6), 56-57,88.
Fazzini, M. (2018). Value, Valuation, and Valuer. Business Valuation, 1–22. https://doi.org/10.1007/978-3-319-89494-2_1
Fernández, P. (2007). Company valuation methods. The most common errors in valuations. https://d1wqtxts1xzle7.cloudfront.net/36234952/COMMON_ERRORS_IN_VALUATION-libre.pdf?1421037150=&response-content-disposition=inline%3B+filename%3DCOMMON_ERRORS_IN_VALUATION.pdf&Expires=1711028303&Signature=Xp4oSFVZIXuNmWEBvhSBd5IBuOYgP1vekAvB1KpvCKRquFnYk
Geertsema, P., & Lu, H. (2023). Relative Valuation with Machine Learning. Journal of Accounting Research, 61(1), 329–376. https://doi.org/10.1111/1475-679X.12464
Glaser, B. G., & Strauss, A. L. (2017). Discovery of grounded theory: Strategies for qualitative research. Discovery of Grounded Theory: Strategies for Qualitative Research, 1–271. https://doi.org/10.4324/9780203793206
Guner, P. U., & Unal, S. N. (2023). An artificial neural network based method for company valuation. Pressacademia. https://doi.org/10.17261/pressacademia.2023.1741
Haich, A. P. (2021). DEEP LEARNING APPLIED TO PUBLIC COMPANY VALUATION FOR VALUE INVESTING.
Harwood, T. G., & Garry, T. (2003). An overview of content analysis. In Westburn Publishers Ltd (Vol. 3, Issue 4). https://doi.org/https://doi.org/10.1362/146934703771910080
Hausman, J. (2012). Contingent valuation: From dubious to hopeless. Journal of Economic Perspectives, 26(4), 43–56. https://doi.org/10.1257/jep.26.4.43
Hoff, J. M., Larose, L. A., & Scaturro, F. J. (2002). Public Companies. Law Journal Press.
Holder, L., Gruenbichler, R., & Grbenic, S. O. (2022). The use of artificial intelligence in business valuation: Status quo and trends based on a literature review. https://graz.elsevierpure.com/en/publications/the-use-of-artificial-intelligence-in-business-valuation-status-q
Hoyos, D., & Mariel, P. (2010). Contingent valuation: Past, present and future. Prague Economic Papers, 4, 329–343. https://doi.org/10.18267/j.pep.380
Hu, X., Sy, M. O., & Wu, L. (2021). A Factor Model of Company Relative Valuation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3706995
Hudson, J. (1986). An analysis of company liquidations. Applied Economics, 18(2), 219–235. https://doi.org/10.1080/00036848600000025
Isik, Y. (2010). AN OVERVIEW OF COMPANY VALUATION TECHNIQUES AND AN APPLICATION.
Jagrič, T., Fister, D., Grbenic, S. O., & Herman, A. (2024). Private Firm Valuation Using Multiples: Can Artificial Intelligence Algorithms Learn Better Peer Groups? Information, 15(6), 305. https://doi.org/10.3390/info15060305
Johnson-Laird, P. (2010). Deductive reasoning. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 8–17. https://doi.org/10.1002/wcs.20
Kaunisto, L. (2024). Estimating private company financial figures in early-phase M&A: A machine learning approach.
Koklev, P. (2023). Prerequisites for the Use of Machine Learning for Business Valuation. Relacoes Internacionais No Mundo Atual, 6(39). https://doi.org/10.21902/Revrima.v6i39.6267
Koklev, P. S. (2022). Business Valuation with Machine Learning. Finance: Theory and Practice, 26(5), 132–148. https://doi.org/10.26794/2587-5671-2022-26-5-132-148
Kruschwitz, L., & Loeffler, A. (2006). Discounted Cash Flow: A Theory of the Valuation of Firms. John Wiley and Sons. https://books.google.si/books?hl=sl&lr=&id=mWM9b6gDVi0C&oi=fnd&pg=PR5&dq=discounted+cash+flow&ots=0q1lFCCjHA&sig=iJYphwkfs3WLaRV6BpPBPEAxB6U&redir_esc=y#v=onepage&q=discounted cash flow&f=false
Kulwizira Lukanima, B. (2023a). An Overview of Corporate Valuation. In Corporate Valuation A Practical Approach with Case Studies (pp. 3–24). https://doi.org/10.1007/978-3-031-28267-6_1
Kulwizira Lukanima, B. (2023b). An Overview of Relative Valuation. In Corporate Valuation A Practical Approach with Case Studies (pp. 613–633). https://doi.org/10.1007/978-3-031-28267-6_19
Kulwizira Lukanima, B. (2023c). Corporate Valuation A Practical Approach with Case Studies. Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-031-28267-6
Kulwizira Lukanima, B. (2023d). Dividend Discount Models. In Corporate Valuation A Practical Approach with Case Studies (pp. 559–583). https://doi.org/10.1007/978-3-031-28267-6_17
Kulwizira Lukanima, B. (2023e). Free Cash Flow Discount Models: Cost of Capital Approach. In Corporate Valuation A Practical Approach with Case Studies (pp. 483–540). https://doi.org/10.1007/978-3-031-28267-6_15
Kulwizira Lukanima, B. (2023f). Free Cash Flow Discount Models: The Adjusted Present Value Approach. In Corporate Valuation A Practical Approach with Case Studies (pp. 541–557). https://doi.org/10.1007/978-3-031-28267-6_16
Kulwizira Lukanima, B. (2023g). Further Issues with Cash Flow Discount Models. In Corporate Valuation A Practical Approach with Case Studies (pp. 585–609). https://doi.org/10.1007/978-3-031-28267-6_18
Leifer, I., & Lev, L. (2016). Small business valuation with use of cash flow stochastic modeling. Proceedings - 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science, and Operations Management, SMRLO 2016, 511–516. https://doi.org/10.1109/SMRLO.2016.90
Liu, M., Shen, Y., Tang, J., & Li, X. (2020). Research on valuation system of listed companies based on neural network model. Proceedings - 2020 International Conference on Virtual Reality and Intelligent Systems, ICVRIS 2020, 1120–1123. https://doi.org/10.1109/ICVRIS51417.2020.00273
Matschke, M. J., Brösel, G., & Matschke, X. (2010). Fundamentals of functional business valuation. Journal of Business Valuation and Economic Loss Analysis, 5(1). https://doi.org/10.2202/1932-9156.1097
Mukhlynina, L., & Nyborg, K. G. (2016). The Choice of Valuation Techniques in Practice: Education versus Profession. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2784850
Myers, M. D. (2020). Qualitative Research in Business and Management (Third). SAGE Publications Ltd.
Nenkov, D., & Hristozov, Y. (2022). DCF Valuation of Companies: Exploring the Interrelation Between Revenue and Operating Expenditures. Economic Alternatives, 28(4), 626–646. https://doi.org/10.37075/EA.2022.4.04
Nissim, D. (2013). Relative valuation of U.S. insurance companies. Review of Accounting Studies, 18(2), 324–359. https://doi.org/10.1007/s11142-012-9213-8
Nyborg, K. G., & Mukhlynina, L. (2016). Survey of Valuation Professionals: Valuation Techniques in Practice.
Oh, S.-J. (2021). Analysis of the Valuation Model for the state-of-the-art ICT Technology. The Journal of the Convergence on Culture Technology, 7(4), 705–710. https://doi.org/https://doi.org/10.17703/JCCT.2021.7.4.705
Öhrner, M., & Öhman, O. (2023). Relative or Discounted Cash Flow Valuation on the Fifty Largest US-Based Corporations on Nasdaq : Which of these valuation methods provides the most accurate valuation forecast?
Onwuegbuzie, A. J., Leech, N. L., & Collins, K. M. T. (2012). Qualitative Analysis Techniques for the Review of the Literature. The Qualitative Report, 17. https://eric.ed.gov/?id=EJ981457
Pétursson, E. (2016). Relative Valuation – Accuracy of Corporate Valuation Using Multiples.
Pienaar, P. T. (2015). The use of the Discounted Cash Flow (DCF) method as a method of valuation within the South African property industry: A critical review.
Sharma, M., & Prashar, E. (2013). A Conceptual Framework for Relative Valuation. The Journal of Private Equity, 16(3), 29–32.
Sherman, A. (2010). Mergers and Acquisitions from A to Z. AMACOM.
Siddiaui, S. S., & Patil, V. A. (2018). Stock Market Valuation using Monte Carlo Simulation. Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies, ICCTCT 2018. https://doi.org/10.1109/ICCTCT.2018.8550864
Sterling, R. R. (1968). The Going Concern: An Examination. The Accounting Review, 43(3), 481–502.
Strašek, S., & Jagrič, T. (2008). Borzni trgi.
Strauss, A. L., & Corbin, J. M. (1998). Basics of Qualitative Research : Techniques and Procedures for Developing Grounded Theory. Sage Publications, Inc. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=18c7cfe7a46c7771b60dc384b1b4e350f65b13e2
Torrez, J. G., Al-Jafari, M., & Juma’h, A. (2018). Corporate Valuation: A Literature Review. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3165643
Vayas-Ortega, G., Soguero-Ruiz, C., Rodríguez-Ibáñez, M., Rojo-Álvarez, J. L., & Gimeno-Blanes, F. J. (2020). On the differential analysis of enterprise valuation methods as a guideline for unlisted companies assessment (II): Applying machine-learning techniques for unbiased enterprise value assessment. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/APP10155334
Venkatachalam, L. (2004). The contingent valuation method: A review. Environmental Impact Assessment Review, 24(1), 89–124. https://doi.org/10.1016/S0195-9255(03)00138-0
Wilimowska, Z., & Krzysztoszek, T. (2013). The use of artificial neural networks in company valuation process. Studies in Computational Intelligence, 457, 279–288. https://doi.org/10.1007/978-3-642-34300-1_27
Yang, Y., Yang, J. Q., Bao, R., Zhan, D. C., Zhu, H., Gao, X. R., Xiong, H., & Yang, J. (2023). Corporate Relative Valuation Using Heterogeneous Multi-Modal Graph Neural Network. IEEE Transactions on Knowledge and Data Engineering, 35(1), 211–224. https://doi.org/10.1109/TKDE.2021.3080293
![Creative Commons License](http://i.creativecommons.org/l/by-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The authors retain rights under the Creative Commons Attribution-ShareAlike 4.0 International CC BY-SA 4.0. Authors assign copyright or license the publication rights in their articles, including abstracts, to MIP=JIBM. This enables us to ensure full copyright protection and to disseminate the article, and of course MIP=JIBM, to the widest possible readership in electronic format. Authors are themselves responsible for obtaining permission to reproduce copyright material from other sources.