Domensko neodvisen pregled vloge razložljive umetne inteligence pri spodbujanju inovacij in ustvarjalnosti v organizacijah
DOI:
https://doi.org/10.32015/JIBM.2025.17.1.8Ključne besede:
razložljiva umetna inteligenca, inovacije, ustvarjalnost, odločanje, organizacijsko vedenjePovzetek
Razložljiva umetna inteligenca (XAI) zagotavlja preglednost in razložljivost v sistemih umetne inteligence ter naslavlja nepreglednost tradicionalnih modelov. Ta pregled preučuje, kako XAI spodbuja inovativnost in ustvarjalnost v organizacijah z izboljšanjem odločanja, zaupanja in sodelovanja na različnih področjih, kot so zdravstvo, proizvodnja in kmetijstvo. Tematska analiza relevantne literature razkriva, da XAI krepi zaupanje deležnikov, spodbuja etične prakse ter premošča razkorak med tehničnimi in netehničnimi ekipami, kar spodbuja vključujoče reševanje problemov. Čeprav ta študija poudarja pomembne kratkoročne koristi, so za razumevanje dolgoročnih vplivov XAI potrebne nadaljnje longitudinalne raziskave. Prispevek ponuja vpogled za akademike, strokovnjake in oblikovalce politik ter poudarja potencial XAI pri spodbujanju inovacij.
Literatura
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. Advances in neural information processing systems, 31. https://dl.acm.org/doi/10.5555/3327546.3327621
Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. https://doi.org/10.1016/j.inffus.2023.101805
Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., ... & Horvitz, E. (2019, May). Guidelines for human-AI interaction. In Proceedings of the 2019 chi conference on human factors in computing systems (pp. 1-13). https://dl.acm.org/doi/abs/10.1145/3290605.3300233
Binns, R. (2018, January). Fairness in machine learning: Lessons from political philosophy. In Conference on fairness, accountability and transparency (pp. 149-159). PMLR. https://proceedings.mlr.press/v81/binns18a.html
Blatch-Jones, A. J., Church, H., & Crane, K. (2024). Exploring the potential benefits and challenges of artificial intelligence for research funding organisations: a scoping review. medRxiv,2024-09. https://www.medrxiv.org/content/10.1101/2024.09.26.24314280v1
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Cambria, E., Malandri, L., Mercorio, F., Nobani, N., & Seveso, A. (2024). Xai meets llms: A survey of the relation between explainable ai and large language models. arXiv preprint arXiv:2407.15248. https://arxiv.org/abs/2407.15248
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human resource management review, 33(1), 100899. https://www.sciencedirect.com/science/article/abs/pii/S1053482222000079
Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey on methods and metrics. Electronics, 8(8), 832. https://doi.org/10.3390/electronics8080832
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://arxiv.org/abs/1702.08608
Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., & Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Computing Surveys, 55(9), 1–33. https://dl.acm.org/doi/abs/10.1145/3561048
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018). Explaining explanations: An overview of interpretability of machine learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 80–89. https://doi.org/10.1109/DSAA.2018.00018
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 1-42. https://dl.acm.org/doi/10.1145/3236009
Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence program. AI Magazine, 40(2), 44–58. https://doi.org/10.1609/aimag.v40i2.2850
Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., ... & Hussain, A. (2024). Interpreting black-box models: a review on explainable artificial intelligence. Cognitive Computation, 16(1), 45-74. https://link.springer.com/article/10.1007/s12559-023-10179-8
Kaur, D., Uslu, S., Rittichier, K. J., & Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Computing Surveys, 55(2), 1–38. https://dl.acm.org/doi/abs/10.1145/3491209
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18. https://www.mdpi.com/1099-4300/23/1/18
Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007
Molnar, C. (2024). Interpretable machine learning: A guide for making black box models explainable. https://christophm.github.io/interpretable-ml-book/
Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16(1), 1–13. https://doi.org/10.1177/1609406917733847
Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Services Research, 34(5), 1189–1208. https://pubmed.ncbi.nlm.nih.gov/10591279/
Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206-215. https://www.nature.com/articles/s42256-019-0048-x
Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, visualizing, and interpreting deep learning models. arXiv preprint arXiv:1708.08296. https://arxiv.org/abs/1708.08296
Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the quality of machine learning explanations: A survey on methods and metrics. Electronics, 10(5), 593. https://doi.org/10.3390/electronics10050593
Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., & Yang, D. (2024). Can large language models transform computational social science?. Computational Linguistics, 50(1), 237-291. https://direct.mit.edu/coli/article/50/1/237/118498/Can-Large-Language-Models-Transform-Computational
Prenosi
Objavljeno
Številka
Rubrika
Licenca
Avtorske pravice (c) 2025 Miha Lavrič, Aurora Lea Lavrič

To delo je licencirano pod Creative Commons Priznanje avtorstva-Nekomercialno 4.0 mednarodno licenco.
Avtorske pravice so zaščitene s Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 4.0 Mednarodna CC BY-SA 4.0 in jih avtorji ohranijo v okviru te licence. Za objavo svojega članka, vključno s povzetkom, prenesejo avtorji avtorske oz. licenčne pravice na revijo MIP = JIBM. To nam omogoča popolno zaščito avtorskih pravic ter razširjanje članka in revije MIP=JIBM v najširši možni krog bralcev revije v elektronski obliki. Avtorji so sami odgovorni za pridobitev dovoljenja za razmnoževanje avtorskega gradiva iz drugih virov.